
3.6 | Adiabatic Processes for an Ideal Gas

Learning Objectives

By the end of this section, you will be able to:

• Define adiabatic expansion of an ideal gas

• Demonstrate the qualitative difference between adiabatic and isothermal expansions

When an ideal gas is compressed adiabatically (Q = 0), work is done on it and its temperature increases; in an adiabatic

expansion, the gas does work and its temperature drops. Adiabatic compressions actually occur in the cylinders of a car,
where the compressions of the gas-air mixture take place so quickly that there is no time for the mixture to exchange heat
with its environment. Nevertheless, because work is done on the mixture during the compression, its temperature does rise
significantly. In fact, the temperature increases can be so large that the mixture can explode without the addition of a spark.
Such explosions, since they are not timed, make a car run poorly—it usually “knocks.” Because ignition temperature rises
with the octane of gasoline, one way to overcome this problem is to use a higher-octane gasoline.

Another interesting adiabatic process is the free expansion of a gas. Figure 3.13 shows a gas confined by a membrane to
one side of a two-compartment, thermally insulated container. When the membrane is punctured, gas rushes into the empty
side of the container, thereby expanding freely. Because the gas expands “against a vacuum” (p = 0) , it does no work, and

because the vessel is thermally insulated, the expansion is adiabatic. With Q = 0 and W = 0 in the first law, ΔEint = 0,
so Eint i = Eint f for the free expansion.

Figure 3.13 The gas in the left chamber expands freely into the right chamber when the membrane is punctured.

If the gas is ideal, the internal energy depends only on the temperature. Therefore, when an ideal gas expands freely, its
temperature does not change.

A quasi-static, adiabatic expansion of an ideal gas is represented in Figure 3.14, which shows an insulated cylinder that
contains 1 mol of an ideal gas. The gas is made to expand quasi-statically by removing one grain of sand at a time from
the top of the piston. When the gas expands by dV, the change in its temperature is dT. The work done by the gas in the
expansion is dW = pdV; dQ = 0 because the cylinder is insulated; and the change in the internal energy of the gas is,

from Equation 3.9, dEint = CV dT . Therefore, from the first law,

CV dT = 0 − pdV = −pdV ,

so

dT = − pdV
CV

.
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Figure 3.14 When sand is removed from the piston one grain
at a time, the gas expands adiabatically and quasi-statically in
the insulated vessel.

Also, for 1 mol of an ideal gas,

d(pV) = d(RT),

so

pdV + Vdp = RdT

and

dT = pdV + Vdp
R .

We now have two equations for dT. Upon equating them, we find that

CV Vdp + (CV + R)pdV = 0.

Now, we divide this equation by pV and use C p = CV + R . We are then left with

CV
dp
p + C p

dV
V = 0,

which becomes

dp
p + γdV

V = 0,

where we define γ as the ratio of the molar heat capacities:

(3.11)
γ =

C p
CV

.
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Thus,

⌠
⌡

dp
p + γ⌠

⌡
dV
V = 0

and

ln p + γln V = constant.

Finally, using ln(Ax) = xlnA and ln AB = ln A + ln B , we can write this in the form

(3.12)pV γ = constant.

This equation is the condition that must be obeyed by an ideal gas in a quasi-static adiabatic process. For example, if an
ideal gas makes a quasi-static adiabatic transition from a state with pressure and volume p1 and V1 to a state with p2

and V2, then it must be true that p1 V1
γ = p2 V2

γ.

The adiabatic condition of Equation 3.12 can be written in terms of other pairs of thermodynamic variables by combining
it with the ideal gas law. In doing this, we find that

(3.13)p1 − γ T γ = constant

and

(3.14)TV γ − 1 = constant.

A reversible adiabatic expansion of an ideal gas is represented on the pV diagram of Figure 3.15. The slope of the curve
at any point is

dp
dV = d

dV
⎛
⎝
constant

V γ
⎞
⎠ = −γ p

V .

Figure 3.15 Quasi-static adiabatic and isothermal expansions
of an ideal gas.

The dashed curve shown on this pV diagram represents an isothermal expansion where T (and therefore pV) is constant. The
slope of this curve is useful when we consider the second law of thermodynamics in the next chapter. This slope is

dp
dV = d

dV
nRT

V = − p
V .

Because γ > 1, the isothermal curve is not as steep as that for the adiabatic expansion.
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Example 3.7

Compression of an Ideal Gas in an Automobile Engine

Gasoline vapor is injected into the cylinder of an automobile engine when the piston is in its expanded position.

The temperature, pressure, and volume of the resulting gas-air mixture are 20 °C , 1.00 × 105 N/m2 , and

240 cm3 , respectively. The mixture is then compressed adiabatically to a volume of 40 cm3 . Note that in

the actual operation of an automobile engine, the compression is not quasi-static, although we are making that
assumption here. (a) What are the pressure and temperature of the mixture after the compression? (b) How much
work is done by the mixture during the compression?

Strategy

Because we are modeling the process as a quasi-static adiabatic compression of an ideal gas, we have

pV γ = constant and pV = nRT . The work needed can then be evaluated with W = ∫
V1

V2
pdV .

Solution
a. For an adiabatic compression we have

p2 = p1
⎛
⎝
V1
V2

⎞
⎠

γ
,

so after the compression, the pressure of the mixture is

p2 = (1.00 × 105 N/m2)⎛⎝
240 × 10−6 m3

40 × 10−6 m3
⎞
⎠

1.40
= 1.23 × 106 N/m2 .

From the ideal gas law, the temperature of the mixture after the compression is

T2 = ⎛
⎝

p2 V2
p1 V1

⎞
⎠T1

= (1.23 × 106 N/m2)(40 × 10−6 m3)
(1.00 × 105 N/m2)(240 × 10−6 m3)

· 293 K

= 600 K = 328 °C.

b. The work done by the mixture during the compression is

W = ∫
V1

V2
pdV .

With the adiabatic condition of Equation 3.12, we may write p as K/V γ, where K = p1 V1
γ = p2 V2

γ.

The work is therefore
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W = ⌠
⌡V1

V2
K
V γdV

= K
1 − γ

⎛

⎝
⎜ 1
V2

γ − 1 − 1
V1

γ − 1

⎞

⎠
⎟

= 1
1 − γ

⎛

⎝
⎜ p2 V2

γ

V2
γ − 1 −

p1 V1
γ

V1
γ − 1

⎞

⎠
⎟

= 1
1 − γ(p2 V2 − p1 V1)

= 1
1 − 1.40[(1.23 × 106 N/m2)(40 × 10−6 m3)

−(1.00 × 105 N/m2)(240 × 10−6 m3)]
= −63 J.

Significance

The negative sign on the work done indicates that the piston does work on the gas-air mixture. The engine would
not work if the gas-air mixture did work on the piston.
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